Learning Language from Perceptual Context #### **David Chen** Supervising Professor: Raymond J. Mooney Doctoral Dissertation Proposal December 15, 2009 ## Semantics of Language - The meaning of words, phrases, etc - Learning semantics of language is one of the ultimate goals in natural language processing - The meanings of many words are grounded in our perception of the physical world: red, ball, cup, run, hit, fall, etc. [Harnad, 1990] - Computer representation should also be grounded in real world perception ## **Grounding Language** Spanish goalkeeper Casillas blocks the ball ## **Grounding Language** # Natural Language and Meaning Representation Spanish goalkeeper Casillas blocks the # Natural Language and Meaning Representation #### **Natural Language (NL)** Spanish goalkeeper Casillas blocks the ball NL: A language that has evolved naturally, such as English, German, French, Chinese, etc # Natural Language and Meaning Representation #### **Natural Language (NL)** Spanish goalkeeper Casillas blocks the ball Meaning Representation Language (MRL) Block(Casillas) NL: A language that has evolved naturally, such as English, German, French, Chinese, etc MRL: Formal languages such as logic or any computer-executable code ## Semantic Parsing and Tactical Generation **Semantic Parsing:** maps a natural-language sentence to a complete, detailed semantic representation # Semantic Parsing and Tactical Generation NL Tactical Generation (NL ← MRL) MRL Spanish goalkeeper Casillas blocks the ball Semantic Parsing (NL → MRL) **Semantic Parsing:** maps a natural-language sentence to a complete, detailed semantic representation **Tactical Generation:** Generates a natural-language sentence from a meaning representation. ### **Strategic Generation** Strategic Generation (Content Selection): Given a set of meaning representations, select a subset ### **Applications** - Natural language interface - Issue commands and queries in natural language - Computer responds with answer in natural language - Knowledge acquisition - Computer assisted tasks ## **Traditional Learning Approach** ## **Traditional Learning Approach** # Example of Annotated Training Corpus | Natural Language (NL) | Meaning Representation Language (MRL) | |---------------------------------|---------------------------------------| | Alice passes the ball to Bob | Pass(Alice, Bob) | | Bob turns the ball over to John | Turnover(Bob, John) | | John passes to Fred | Pass(John, Fred) | | Fred shoots for the goal | Kick(Fred) | | Paul blocks the ball | Block(Paul) | | Paul kicks off to Nancy | Pass(Paul, Nancy) | | | ••• | # Learning Language from Perceptual Context - Constructing annotated corpora for language learning is difficult - Children acquire language through exposure to linguistic input in the context of a rich, relevant, perceptual environment - Ideally, a computer system can learn language in the same manner ### Learning in Virtual Environment - Many schools use 3D virtual environments to support language learning - Immersive: Surrounded by a stimulating environment - Social: Language learners can interact with others - Creative: Constructing objects as part of learning - Online worlds including Second Life - Different ways of learning - Task-based learning - Collaborative construction - Virtual tourism ### Learning in Virtual Environment - Growing video game industry - \$9.5 billion in the US in 2007, \$11.7 billion in 2008 (Entertainment Software Association annual report) - Serious games - DARWARS: Military training systems - SimPort: Simulated construction and management of a sea port project Alice: 在餐廳的地方右轉 Alice: 在醫院的地方右轉 #### **Scenario 1** 在餐廳的地方右轉 #### **Scenario 2** 在醫院的地方右轉 #### **Scenario 1** 在 的地方右轉 #### **Scenario 2** 在 的地方右轉 Make a right turn #### Scenario 1 在餐廳的地方右轉 #### **Scenario 2** 在醫院的地方右轉 #### **Scenario 1** #### **Scenario 2** #### Scenario 1 在餐廳的地方右轉 #### **Scenario 2** 在醫院的地方右轉 #### **Scenario 1** #### Scenario 2 ### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions ### Semantic Parser Learners Learn a function from NL to MR NL: "Purple3 passes the ball to Purple5" Semantic Parsing (NL → MR) Tactical Generation $(MR \rightarrow NL)$ MR: Pass (Purple3, Purple5) - We experiment with two semantic parser learners - -WASP [Wong & Mooney, 2006; 2007] - -KRISP [Kate & Mooney, 2006] ### WASP: Word Alignment-based Semantic Parsing - Uses statistical machine translation techniques - Synchronous context-free grammars (SCFG) [Wu, 1997; Melamed, 2004; Chiang, 2005] - Word alignments [Brown et al., 1993; Och & Ney, 2003] - Capable of both semantic parsing and tactical generation ## KRISP: Kernel-based Robust Interpretation by Semantic Parsing - Productions of MR language are treated like semantic concepts - SVM classifier is trained for each production with string subsequence kernel - These classifiers are used to compositionally build MRs of the sentences - More resistant to noisy supervision but incapable of tactical generation ### KRISPER: KRISP with EM-like Retraining - Extension of KRISP that learns from ambiguous supervision [Kate & Mooney, 2007] - Uses an iterative EM-like method to gradually converge on a correct meaning for each sentence. ### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions ## Tractable Challenge Problem: Learning to Be a Sportscaster - Goal: Learn from realistic data of natural language used in a representative context while avoiding difficult issues in computer perception (i.e. speech and vision). - Solution: Learn from textually annotated traces of activity in a simulated environment. - Example: Traces of games in the RoboCup simulator paired with textual sportscaster commentary. ## RoboCup Simulation League ## RoboCup Simulation League ## Learning to Sportscast - Learn to sportscast by observing sample human sportscasts - Build a function that maps between natural language (NL) and meaning representation (MR) - NL: Textual commentaries about the game - MR: Predicate logic formulas that represent events in the game ## Robocup Sportscaster Trace #### Natural Language Commentary #### Purple goalie turns the ball over to Pink8 Purple team is very sloppy today Pink8 passes the ball to Pink11 Pink11 looks around for a teammate Pink11 makes a long pass to Pink8 Pink8 passes back to Pink11 #### Meaning Representation ``` badPass (Purple1, Pink8) turnover (Purple1, Pink8) kick (Pink8) pass (Pink8, Pink11) kick (Pink11) ``` ``` kick (Pink11) ballstopped kick (Pink11) pass (Pink11, Pink8) kick (Pink8) pass (Pink8, Pink11) ``` ### Robocup Sportscaster Trace ``` Natural Language Commentary Meaning Representation badPass (Purple1, Pink8) -turnover (Purple1, Pink8) Purple goalie turns the ball over to Pink8 --- pass (Pink8, Pink11) Purple team is very sloppy today Pink8 passes the ball to Pink11 Pink11 looks around for a teammate kick (Pink11) Pink11 makes a long pass to Pink8 pass (Pink11, Pink8) kick (Pink8) Pink8 passes back to Pink11 ----- ----- pass (Pink8, Pink11) ``` ### Robocup Sportscaster Trace | Natural Language Commentary | Meaning Representation | |---|---| | Purple goalie turns the ball over to Pink8 | badPass (Purple1, Pink8) turnover (Purple1, Pink8) kick (Pink8) pass (Pink8, Pink11) | | Purple team is very sloppy today Pink8 passes the ball to Pink11 | pass (Pinko, Pink 11) | | Pink11 looks around for a teammate | kick (Pink11) | | Pink11 makes a long pass to Pink8 | ballstoppedkick (Pink11) | | Pink8 passes back to Pink11 | pass (Pink11, Pink8)
kick (Pink8)
pass (Pink8, Pink11) | ### Robocup Sportscaster Trace ### Robocup Data - Collected human textual commentary for the 4 Robocup championship games from 2001-2004. - Avg # events/game = 2,613 - Avg # English sentences/game = 509 - Avg # Korean sentences/game = 499 - Each sentence matched to all events within previous 5 seconds. - Avg # MRs/sentence = 2.5 (min 1, max 12) - Manually annotated with correct matchings of sentences to MRs (for evaluation purposes only). ### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions ### **Tactical Generation** - Learn how to generate NL from MR - Example: Pass(Pink2, Pink3) → "Pink2 kicks the ball to Pink3" - Two steps - 1. Disambiguate the training data - 2. Learn a language generator ### **WASPER** - WASP with EM-like retraining to handle ambiguous training data. - Same augmentation as added to KRISP to create KRISPER. ### KRISPER-WASP - First train KRISPER to disambiguate the data - Then train WASP on the resulting unambiguously supervised data. ### **WASPER-GEN** - Determines the best matching based on generation (MR→NL). - Score each potential NL/MR pair by using the currently trained WASP⁻¹ generator. - Compute NIST MT score [NIST report, 2002] between the generated sentence and the potential matching sentence. Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 1-grams: Purple2, passes, to, Purple3 2-grams: Purple2 passes, passes to, to Purple3 3-grams: Purple2 passes to, passes to Purple3 Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 4/4 1-grams: Purple2, passes, to, Purple3 2-grams: Purple2 passes, passes to, to Purple3 3-grams: Purple2 passes to, passes to Purple3 Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 4/4 1-grams: Purple2, passes, to, Purple3 2/3 2-grams: Purple2 passes, passes to, to Purple3 3-grams: Purple2 passes to, passes to Purple3 Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 4/4 1-grams: Purple2, passes, to, Purple3 2/3 2-grams: Purple2 passes, passes to, to Purple3 1/2 3-grams: Purple2 passes to, passes to Purple3 Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 - 4/4 1-grams: Purple2, passes, to, Purple3 - 2/3 2-grams: Purple2 passes, passes to, to Purple3 - 1/2 3-grams: Purple2 passes to, passes to Purple3 - 0/1 4-gram: Purple2 passes to Purple3 Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 4/4 1-grams: Purple2, passes, to, Purple3 2/3 2-grams: Purple2 passes, passes to, to Purple3 1/2 3-grams: Purple2 passes to, passes to Purple3 BLEU: $$\sqrt[4]{\frac{4}{4} \times \frac{2}{3} \times \frac{1}{2} \times \frac{0}{1}} = 0$$ Target: Purple2 quickly passes to Purple3 Candidate: Purple2 passes to Purple3 - 4/4 1-grams: Purple2, passes, to, Purple3 - 2/3 2-grams: Purple2 passes, passes to, to Purple3 - 1/2 3-grams: Purple2 passes to, passes to Purple3 - 0/1 4-gram: Purple2 passes to Purple3 BLEU: $$\sqrt[4]{\frac{4}{4} \times \frac{2}{3} \times \frac{1}{2} \times \frac{0}{1}} = 0$$ NIST: $\frac{4}{4} + \frac{2}{3} + \frac{1}{2} + \frac{0}{1} = 2.167$ #### **Sportscaster Robocup Simulator** ass (purple5, purple7) Turnover (purple7, pink2 Purple7 loses the 45 ball to Pink2 Pink2 kicks the ball to Pink5 -- Pass (pink5, pink8) Pink5 makes a long pass to Pink8 Ballstopped Pink8 shoots the --- Kick (pink8) ball **Ambiguous Training Data** #### Pass (purple5, purple7) Furnover (purple7, pink2 Purple7 loses the ball to Pink2 Pass (pink2, pink5) Pink2 kicks the ball Kick (pink5) to Pink5 Pass (pink5, pink8) Pink5 makes a long pass to Pink8 **Ballstopped** Kick (pink8) Pink8 shoots the ball **Ambiguous Training Data** **Robocup Simulator** **Sportscaster** #### **Sportscaster** #### **Robocup Simulator** | Purple7 loses the ball to Pink2 Pink2 kicks the ball to Pink5 Pink5 makes a long pass to Pink8 Pink8 shoots the ball ball Pink8 shoots the ball ball | | | |--|--|--| | Ambiguous Training Data | | | | '- | Heamhigueus Training Data | | |----|----------------------------------|------------------------| | 0 | Pink8 shoots the ball | Kick (pink8) | | X | Pink5 makes a long pass to Pink8 | Kick (pink5) | | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | X | Purple7 loses the ball to Pink2 | Kick (pink2) | | | | | Unambiguous Training Data Initial Semantic Parser #### **Sportscaster** #### **Robocup Simulator** | Purple7 loses the ball to Pink2 kicks the ball to Pink5 Pink5 makes a long pass to Pink8 | Pass (purple5, purple7) Turnover (purple7 , pink2) Kick (pink2) Pass (pink2 , pink5) Kick (pink5) Pass (pink5 , pink8) Ballstopped Kick (pink8) | |---|--| | Ambiguous Training Data | | | X | Purple7 loses the ball to Pink2 | Kick (pink2) | |---------------------------|----------------------------------|------------------------| | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | X | Pink5 makes a long pass to Pink8 | Kick (pink5) | | 0 | Pink8 shoots the ball | Kick (pink8) | | Unambiguous Training Data | | | Semantic Parser Semantic Parser Learner # Sportscaster Robocup Simulator **THE VIEW INSTALL STREET IN THE VIEW V | 0 | Purple7 loses the ball to Pink2 | Turnover (purple7 , pink2) | |---------------------------|----------------------------------|------------------------------| | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | X | Pink5 makes a long pass to Pink8 | Kick (pink5) | | 0 | Pink8 shoots the ball | Kick (pink8) | | Unambiguous Training Data | | | | 0 | Purple7 loses the ball to Pink2 | Turnover (purple7 , pink2) | |---------------------------|----------------------------------|------------------------------| | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | X | Pink5 makes a long pass to Pink8 | Kick (pink5) | | 0 | Pink8 shoots the ball | Kick (pink8) | | Unambiguous Training Data | | | | 0 | Purple7 loses the ball to Pink2 | Turnover (purple7 , pink2) | |---------------------------|----------------------------------|------------------------------| | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | 0 | Pink5 makes a long pass to Pink8 | Pass (pink5 , pink8) | | 0 | Pink8 shoots the ball | Kick (pink8) | | Unambiguous Training Data | | | ### KRISPER and WASPER #### **Sportscaster** #### **Robocup Simulator** | | Purple7 loses the Purple7 loses the Kick (pink2) | | | |---|--|--|--| | l | ball to Pink2 Pass (pink2, pink5) | | | | | Pink2 kicks the ball to Pink5 | | | | | Pink5 makes a long Pass (pink5, pink8) | | | | l | pass to Pink8 Ballstopped | | | | | Pink8 shoots the ball Kick (pink8) | | | | | Ambiguous Training Data | | | | 0 | Purple7 loses the ball to Pink2 | Turnover (purple7 , pink2) | |---------------------------|----------------------------------|------------------------------| | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | X | Pink5 makes a long pass to Pink8 | Kick (pink5) | | 0 | Pink8 shoots the ball | Kick (pink8) | | Unambiguous Training Data | | | Semantic Parser Semantic Parser Learner (KRISP/WASP) ### **WASPER-GEN** #### **Sportscaster** #### **Robocup Simulator** | Purple7 loses the |
 | Turnover (purple7 , pink2) Kick (pink2) | |----------------------|------|---| | ball to Pink2 | 11 | Pass (pink2 . pink5) | | Pink2 kicks the ball | 42 | Kick (pink5) | | to Pink5 | 11. | , | Pink5 makes a long ———— Pass (pink5, pink8) pass to Pink8 Pink8 shoots the Kick (pink8) ball **Ambiguous Training Data** | 0 | Purple7 loses the ball to Pink2 | Turnover (purple7 , pink2) | |---|----------------------------------|------------------------------| | 0 | Pink2 kicks the ball to Pink5 | Pass (pink2 , pink5) | | X | Pink5 makes a long pass to Pink8 | Kick (pink5) | | 0 | Pink8 shoots the ball | Kick (pink8) | **Unambiguous Training Data** ### Matching - 4 Robocup championship games from 2001-2004. - Avg # events/game = 2,613 - Avg # English sentences/game = 509 - Leave-one-game-out cross-validation - Metric: - Precision: % of system's annotations that are correct - Recall: % of gold-standard annotations produced - F-measure: Harmonic mean of precision and recall ### **Matching Results** ### **Tactical Generation** - Measure how accurately NL generator produces English sentences for chosen MRs in the test games. - Use gold-standard matches to determine the correct sentence for each MR that has one. - Leave-one-game-out cross-validation - Metric: - BLEU score: [Papineni et al, 2002], N=4 ### **Tactical Generation Results** ### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions ### **Strategic Generation** - Generation requires not only knowing how to say something (tactical generation) but also what to say (strategic generation). - For automated sportscasting, one must be able to effectively choose which events to describe. ### **Example of Strategic Generation** ``` pass (purple7, purple6) ballstopped kick (purple6) pass (purple6, purple2) ballstopped kick (purple2) pass (purple2, purple3) kick (purple3) badPass (purple3, pink9) turnover (purple3, pink9) ``` ### **Example of Strategic Generation** ``` pass (purple7, purple6) ballstopped kick (purple6) pass (purple6, purple2) ballstopped kick (purple2) pass (purple2, purple3) kick (purple3) badPass (purple3, pink9) turnover (purple3, pink9) ``` ### **Strategic Generation** - For each event type (e.g. pass, kick) estimate the probability that it is described by the sportscaster. - Requires correct NL/MR matching - Use estimated matching from tactical generation - Iterative Generation Strategy Learning ## Iterative Generation Strategy Learning (IGSL) - Directly estimates the likelihood of an event being commented on - Self-training iterations to improve estimates - Uses events not associated with any NL as negative evidence ### **IGSL** Example ``` Natural Language Commentary Meaning Representation 1/3 Ballstopped Kick (purple7) Pass (purple7, purple3) Ballstopped Kick (pink3) Turnover (purple3, pink4) Pink4 passes out to Pink8 P (Kick) = (1/3 + 1/2) / 3 = 0.278 ``` ``` Natural Language Commentary Meaning Representation 1/3 Ballstopped 1/3 Kick (purple7) Pass (purple7, purple3) Ballstopped Purple7 passes to Purple 3 Kick (pink3) Purple3 loses the ball to Pink4 1/2 Kick (pink4) Pass (pink4 , pink8) Pink4 passes out to Pink8 P(Kick) = (1/3 + 1/2) / 3 = 0.278 P(Pass) = (1/3 + 1/2) / 2 = 0.417 P(Turnover) = (1) / 1 = 1 P(Ballstopped) = (1/3) / 2 = 0.17 ``` ``` Natural Language Commentary Meaning Representation 0.167 / (0.167 + 0.278 + 0.417) = 0.194 Ballstopped Kick (purple7) Pass (purple7, purple3) Ballstopped Purple7 passes to Purple 3 Kick (pink3) 1 -- Turnover (purple3 , pink4) 0.400 Kick (pink4) Pass (pink4, pink8) Purple3 loses the ball to Pink4 Pink4 passes out to Pink8 P(Kick) = (1/3 + 1/2) / 3 = 0.278 P(Pass) = (1/3 + 1/2) / 2 = 0.417 P(Turnover) = (1) / 1 = 1 P(Ballstopped) = (1/3) / 2 = 0.17 ``` ``` Natural Language Commentary Meaning Representation 0.194 Ballstopped Pass (purple7, purple3) Ballstopped Purple7 passes to Purple 3 Kick (pink3) 1 Turnover (purple3 , pink4) 0.400 Kick (pink4) Pass (pink4, pink8) Purple3 loses the ball to Pink4 Pink4 passes out to Pink8 P(Kick) = (0.323 + 0.400) / 3 = 0.241 P(Pass) = (0.484 + 0.600) / 2 = 0.542 P(Turnover) = (1) / 1 = 1 P(Ballstopped) = (0.194) / 2 = 0.097 ``` ``` Natural Language Commentary Meaning Representation 0.033 Ballstopped 0.160 Kick (purple7) Pass (purple7, purple3) Ballstopped Purple7 passes to Purple 3 Kick (pink3) 1 Turnover (purple3 , pink4) Purple3 loses the ball to Pink4 0.165 Kick (pink4) Pass (pink4 , pink8) 0.835 Pink4 passes out to Pink8 P(Kick) = 0.148 P(Pass) = 0.748 P(Turnover) = (1) / 1 = 1 P (Ballstopped) = (1/3) / 2 = 0.030 ``` #### Strategic Generation Performance - Evaluate how well the system can predict which events a human comments on - Metric: - Precision: % of system's annotations that are correct - Recall: % of gold-standard annotations correctly produced - F-measure: Harmonic mean of precision and recall ## Strategic Generation Results 80 #### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions #### **Human Evaluation** - Used Amazon's Mechanical Turk to recruit human judges (~40 judges per video) - 8 commented game clips - 4 minute clips randomly selected from each of the 4 games - Each clip commented once by a human, and once by the machine - Presented in random counter-balanced order - Judges were not told which ones were human or machine generated ## **Human Evaluation** | Score | English
Fluency | Semantic
Correctness | Sportscasting
Ability | |-------|--------------------|-------------------------|--------------------------| | 5 | Flawless | Always | Excellent | | 4 | Good | Usually | Good | | 3 | Non-native | Sometimes | Average | | 2 | Disfluent | Rarely | Bad | | 1 | Gibberish | Never | Terrible | #### **Demo Clip** - Game clip commentated using WASPER-GEN with IGSL, since this gave the best results for generation. - FreeTTS was used to synthesize speech from textual output. - English: http://www.youtube.com/watch?v=L_MIRS7NBpU - Korean: http://www.youtube.com/watch?v=Dur9K5AiK8Y #### **Human Evaluation** | | Syntax | Semantic | Overall | Human? | |-----------------|--------|----------|---------|--------| | 2001 Human | 3.74 | 3.59 | 3.15 | 20.59% | | 2001 Machine | 3.89 | 3.81 | 3.61 | 40.00% | | 2002 Human | 4.13 | 4.58 | 4.03 | 42.11% | | 2002 Machine | 3.97 | 3.74 | 3.29 | 11.76% | | 2003 Human | 3.54 | 3.73 | 2.61 | 13.51% | | 2003 Machine | 3.89 | 4.26 | 3.37 | 19.30% | | 2004 Human | 4.03 | 4.17 | 3.54 | 20.00% | | 2004 Machine | 4.13 | 4.38 | 4.0 | 56.25% | | Average Human | 3.86 | 4.03 | 3.34 | 24.31% | | Average Machine | 3.94 | 4.03 | 3.48 | 26.76% | #### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions ## Referential vs. Functional Meanings - Referential meanings - Describe objects and events in the world - Completed work on learning to sportscast - Functional meanings - Aim to achieve some actions in the world - Proposed work on learning navigation instructions # Challenge on Generating Instructions in Virtual Environments (GIVE) ## **Learning Approach** - Passive learning - Observes human instructor guiding a human follower - Interactive learning as follower - Tries to follow human instructions - Interactive learning as instructor - Generates instructions to guide human follower #### **Navigation Task** - Two participants: instructor and follower - Given: starting location and destination - Instructor: Give directions for navigating - Follower: Follows direction - Success if follower reaches the intended destination - Data contains ~800 instructions for 3 virtual environments [MacMahon et al., 2006] #### **Evaluations** - Task completion - Did the follower reach the destination? - Efficiency - How long and how many steps did it take to complete the task - Partial correctness - How much of the task did the follower complete ## Challenges - Many different instructions for the same task - Describe different actions - Use different parameters - Different ways to describe the same parameters - Hidden MRs - Needs to infer the MR from observed actions - Exponential number of possible MRs ## **Environment** #### **Environment** ## **Example of Instructions** - •Take your first left. Go all the way down until you hit a dead end. - Go towards the coat hanger and turn left at it. Go straight down the hallway and the dead end is position 4. - •Walk to the hat rack. Turn left. The carpet should have green octagons. Go to the end of this alley. This is p-4. - •Walk forward once. Turn left. Walk forward twice. ## **Example of Instructions** Start: 3, End: 4 Observed primitive actions: Forward, Left, Forward, Forward - •Take your first left. Go all the way down until you hit a dead end. - Go towards the coat hanger and turn left at it. Go straight down the hallway and the dead end is position 4. - •Walk to the hat rack. Turn left. The carpet should have green octagons. Go to the end of this alley. This is p-4. - •Walk forward once. Turn left. Walk forward twice. Instructions ... Walk forward twice ... MR ... Travel(Distance = 2) ... **Instructions** ... Walk forward twice ... MR ... Travel(Distance = 2) ... **Instructions** ... Walk forward twice ... Semantic Parsing **Tactical Generation** MR ... Travel(Distance = 2) ... **Navigation** **Strategic Generation** **Instructions** ... Walk forward twice ... Semantic Parsing **Tactical Generation** MR ... Travel(Distance = 2) ... **Navigation** **Strategic Generation** #### Modeling the Instruction Parsing Process - Use semantic parser to produce a set of good MRs from the instructions - Use the navigation component to verify which of these MRs result in the correct actions - Refine the MRs if none of them are correct #### Training Initial Semantic Parser - Construct the most specific MR - Overestimates the details ``` Travel(Precondition=(Right=Wall, Left=Concrete Hall, Front=Blue Hall, Back=Blue Hall), Distance=1, Until=(Intersection(Order=1, Current Path=Blue Hallway, Cross Path=Yellow Hallway), Hat Rack), Postcondition=(Right=Yellow Hall, Left=Yellow Hall,Front=Blue Hall, Back=Blue Hall) ``` #### Refinement - Modifies an MR until it produces the correct actions - First remove any parts that do not appear in the most specific MR - Then systematically add parts of the most specific MR - Prefers the least amount of modification - Want a MR closer to the original parse - Prefers shortest MR - Avoid superfluous connections ## Interactive Learning - The system can participate in the navigation task as instructor or follower - Feedback from human partner helps fix errors in understanding - Reweigh the rules that led to the positive or negative feedback #### Overview - Background and related works - Completed work: Sportscasting - Tactical generation - Strategic generation - Human evaluation - Proposed work: Navigation instructions - Conclusions #### Conclusion - Current language learning work uses expensive, annotated training data. - We have developed a language learning system that can learn from language paired with an ambiguous perceptual environment. - We have evaluated it on the task of learning to sportscast simulated RoboCup games. - The proposed future work aims to solve the problem of learning how to give and receive navigational instructions in a virtual world ## **Backup Slides** 1. Assume every possible meaning for a sentence is correct ``` badPass(Purple1, Pink8) curnover (Purple1, Pink8) Purple goalie turns the ball over to Pink8 pass (Pink8, Pink11) Purple team is very sloppy today Pink8 passes the ball to Pink11 Pink11 looks around for a teammate kick (Pink11) Pink11 makes a long pass to Pink8 pass (Pink11, Pink8) ____ kick (Pink8) Pink8 passes back to Pink11 ---- pass (Pink8, Pink11) ``` 1. Assume every possible meaning for a sentence is correct 2. Resulting NL-MR pairs are weighted and given to semantic parser learner 3. Estimate the confidence of each NL-MR pair using the resulting trained semantic parser ``` O.65 badPass (Purple1, Pink8) Purple goalie turns the ball over to Pink8 O.22 kick (Pink8) Purple team is very sloppy today 0.85 0.81 pass (Pink8, Pink11) Pink8 passes the ball to Pink11 Pink11 looks around for a teammate O.76 ballstopped Pink11 makes a long pass to Pink8 O.76 kick (Pink11) Dallstopped Pink11 makes a long pass to Pink8 O.67 kick (Pink11) Pink8 passes back to Pink11 Pink8 passes back to Pink11 ``` 4. Use *maximum weighted matching* on a bipartite graph to find the best NL-MR pairs [Munkres, 1957] ``` 0.65 badPass (Purple1, Pink8) .87 -turnover (Purple1, Pink8) Purple goalie turns the ball over to Pink pass (Pink8, Pink11) Purple team is very sloppy today Pink8 passes the ball to Pink11 Pink11 looks around for a teammate Pink11 makes a long pass to Pink8 pass (Pink11, Pink8) 0.67 kick (Pink8) -0.86 - pass (Pink8, Pink11) Pink8 passes back to Pink11 ``` 4. Use *maximum weighted matching* on a bipartite graph to find the best NL-MR pairs [Munkres, 1957] ``` 0.65 badPass (Purple1, Pink8) 37-turnover (Purple1, Pink8) Purple goalie turns the ball over to Pink 13 pass (Pink8, Pink11) Purple team is very sloppy today Pink8 passes the ball to Pink1 Pink11 looks around for a teammate Pink11 makes a long pass to Pink8 pass (Pink11, Pink8) 0.67 ____ kick (Pink8) 0.86 pass (Pink8, Pink11) Pink8 passes back to Pink11 ``` 5. Give the best pairs to the semantic parser learner in the next iteration, and repeat until convergence ``` badPass (Purple1, Pink8) turnover (Purple1, Pink8) Purple goalie turns the ball over to Pink8 kick (Pink8) pass (Pink8, Pink11) Purple team is very sloppy today kick (Pink11) Pink8 passes the ball to Pink11 Pink11 looks around for a teammate kick (Pink11) ballstopped kick (Pink11) Pink11 makes a long pass to Pink8 pass (Pink11, Pink8) kick (Pink8) pass (Pink8, Pink11) Pink8 passes back to Pink11 ```